Complex Lagrangian embeddings of moduli spaces of vector bundles

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irreducibility of Moduli Spaces of Vector Bundles on K3 Surfaces

Let X be a projective K3 surface defined over C and H an ample divisor on X. For a coherent sheaf E on X, v(E) := ch(E) √ tdX ∈ H∗(X,Z) is the Mukai vector of E, where tdX is the Todd class of X. We denote the moduli space of stable sheaves E of v(E) = v by MH(v). If v is primitive and H is general (i.e. H does not lie on walls [Y3]), then MH(v) is a smooth projective scheme. In [Mu1], Mukai sh...

متن کامل

Global Sections of Some Vector Bundles on Kontsevich Moduli Spaces

On the Kontsevich moduli space of unpointed stable maps to P1 of genus 0 and degree e, there is a tautological vector bundle of rank e − 1. Global sections of tensor powers of this vector bundle arise when considering holomorphic contravariant tensors on Kontsevich spaces of stable maps to more general projective varieties. The computation of the global sections is reduced to an explicit combin...

متن کامل

Moduli Spaces of Vector Bundles over a Klein Surface

A compact topological surface S, possibly non-orientable and with non-empty boundary, always admits a Klein surface structure (an atlas whose transition maps are dianalytic). Its complex cover is, by definition, a compact Riemann surface M endowed with an anti-holomorphic involution which determines topologically the original surface S. In this paper, we compare dianalytic vector bundles over S...

متن کامل

Moduli of Toric Vector Bundles

We give a presentation of the moduli stack of toric vector bundles with fixed equivariant total Chern class as a quotient of a fine moduli scheme of framed bundles by a linear group action. This fine moduli scheme is described explicitly as a locally closed subscheme of a product of partial flag varieties cut out by combinatorially specified rank conditions. We use this description to show that...

متن کامل

Extensions of Vector Bundles and Rationality of Certain Moduli Spaces of Stable Bundles

In this paper, it is proved that certain stable rank-3 vector bundles can be written as extensions of line bundles and stable rank-2 bundles. As an application, we show the rationality of certain moduli spaces of stable rank-3 bundles over the projective plane P 2 .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Differential Geometry and its Applications

سال: 2001

ISSN: 0926-2245

DOI: 10.1016/s0926-2245(00)00040-1